Tag Archives for " Sentiment Analytics "

The benefits of SAS sentiment analysis in business

Often struggle to grasp the volume but the real sentiment behind the content as well, which is why SAS sentiment analysis is a big asset.

The digital era gave people the means to express themselves. Whether it be Tweets, Facebooks posts or customer reviews, there is a lot of user-generated content that businesses can look into for more information. Furthermore, this user-generated content can be very valuable if used properly. In fact, studies show that customer reviews are twelve times more trustworthy than company produced marketing material. However, analysing the sentiment behind the content remains a huge challenge. Organisations often struggle to not only grasp the volume but the real sentiment behind the content as well, which is why SAS sentiment analysis tools are a huge business asset. In this blog post, we take a look at what sentiment analysis can do for organisations.

The uses of SAS sentiment analysis in business

SAS sentiment analysis allows businesses to get a better understanding of the feelings behind user-generated content. It uses statistical and linguistic conditions to identify negative, positive, neutral and even unclassified opinions from the content. The analytics platform can be used in many areas, particularly in market research.

Monitoring brand sentiment

Sentiment analysis tools can be essential for brand or reputation monitoring. No matter the industry they are in, every organisation can use sophisticated tools to monitor people’s feelings about the brand. SAS sentiment analysis tools can be useful in this regard because they can analyze different samples of user-generated content like customer reviews. This is useful in different functions like assessing customer response to new products, assessing brand perception and even monitoring content from influencers. Sentiment analysis tools are great for monitoring brand reception.

SAS sentiment analysis tools are an integral part of strategy formation. For marketers, the ability to see how customers perceive their brand makes sentiment analysis an invaluable part of forming marketing strategies. The tools can be used to assess mentions on different media platforms, identify the most relevant platforms to the company’s brand and even automate media monitoring processes. Hence, sentiment analysis tools can be used for evaluating marketing efforts to see the results and inform strategies.

Analyse product offerings

SAS sentiment analysis can do more than just analyse customer opinions, they can analyse how well the product is performing on the market. While there are some similarities to brand monitoring, there is one key difference: Brand monitoring is keeping an eye on how customers perceive the whole brand, while product analytics focuses on response to a specific product. Thanks to analysis tools, organisations have a better understanding of how people will respond to new and old products. They can use SAS sentiment tools to analyse every review and a bit of feedback to make adjustments accordingly. Sentiment analysis gives marketers a better understanding of how customers respond to a new product.

Improve the customer experience

With the ability to analyse how people are interacting with a brand, organisations are in a much better position to improve the customer’s experience. SAS sentiment analysis allows organisations to collect feedback from each customer interacting with the brand for analysis using powerful algorithms. Once the overall trend is found, the organisations will have a better understanding of what is affecting customers and how many feel this way. A better understanding of customers leads to several benefits for the end consumer, like better response times to complaints and meaningful feedback. For example, Google is using sentiment analytics to monitor feedback to Chrome and make updates accordingly. Thanks to sentiment analysis, organisations have a better understanding of how their customer’s feel on any subject.

Using SAS tools for the future

SAS sentiment analysis tools are crucial for the future because they provide a competitive advantage for organisations. No matter the industry, organisations face stiff competition, but a better understanding of the target consumer market helps them finetune and refine their marketing strategies so they can successfully compete in their respective industries. Sentiment analysis tools will also be crucial as knowing what people say about your brand across different mediums is vital. Of course, to use SAS sentiment analysis, organisations need to invest in the right platform that would bring data analysis capabilities to those who don’t have a technical background. A platform like SAS Viya can be useful in making the analytical capabilities of sentiment analysis more accessible.

How and why companies use sentiment analysis in their business strategies

Corporations are well aware of the potential value that a brand represents, this is why they look towards sentiment analysis for answers.

Analysing data sources and deriving business insights through them has become a norm for a majority of organisations today. Corporations are well aware of the potential value that big data represents, and are more than willing to invest in systems that can make sense of all this information and deliver predictive business insights. Interestingly though, there is a form of intelligence that doesn’t get nearly as much attention as it deserves – and that is sentiment analysis.

It is primarily an automated process that discerns the intent or opinion behind a spoken or written statement. This, in turn, allows companies to clearly visualise and gauge overall public opinions regarding various aspects of their business – from their products and services to campaigns and brand image. So how can companies use this information to formulate their strategies, and if they haven’t adopted sentiment analysis why should they? Let’s find out.

How does sentiment analysis work?

In essence, the whole process involves using a machine learning algorithms into models – like the ones SAS offers. These models are then able to sift through unstructured text via a number of varying approaches. This includes a combination of natural language processing, machine learning and linguistic rules. Through this process, businesses are able to assign certain values to sentiments that are held regarding them. Generally, the categorisation boils down to whether it’s positive, negative or neutral.

Now, you might be inclined to ask what exactly ‘unstructured text’ is. This pretty much refers to the vast amount of data that is stored in textual form; this includes emails, social media posts, chat interactions, website tickets and an array of other items and platforms.

All of this has a great many advantages for businesses. For one, employing tools for sentiment analysis allows for scalability, as you’re processing large amounts of data at relatively low cost. What’s more, the real-time analytical potential of these platforms can be vital to businesses when faced with a crisis situation or a sudden PR issue. But this isn’t all that sentiment analysis offers a business, it has quite a few active applications as well.

Sentiment analysis for product development and optimisation

A company’s products are at the heart of their success. Businesses are always looking to create the best products possible – ones that best meet customer expectations while staying superior to the alternatives the competition offers. It should be obvious then how sentiment analysis can be a major advantage for businesses with regards to product development and optimisation.

Think of all the thousands of reviews left on websites and social media that your analytics tools will scour through, and imagine all the opinion pieces, tweets and social posts that it will process. All of this will inform your business about what is and what isn’t working with your products. For example, think of a company that develops smartphones – sentiment analysis could reveal that users are extremely happy with the speed and performance, are content with the design, and are unhappy with camera quality. Now you know exactly what to optimise, what to completely change and what to keep as is for the next round of product development.

Making better decisions and achieving effective communications

There’s a myriad of communication channels that connect consumers with businesses these days. Not only does this mean that customers have more power than ever to directly express their opinions about your business – but it also means that all the communications you put out are subject to judgement by your consumers, as well as the public at large. The sheer ambiguity of all this – compounded by the vast volume of opinions floating about – can make both using and analysing these platforms seem like a daunting task.

Sentiment analysis is able to demystify all of this, however. By combining sentiment intelligence with descriptive analytic techniques, businesses are able to clearly visualise what’s being said about them on all these different platforms. In fact, you’ll even be able to see how users feel about your competition.

All of this works on a real-time basis, of course, so you’ll be able to identify how your messages, offers and campaigns are performing on the fly and course-correct as needed. This makes the decision-making process simpler as well – there’s less room for doubt and anxiety now as you’re clearly aware of what your users’ opinions are. What’s more, you have a backlog of information regarding user opinions on past decisions to base your new choices on!

Providing better customer care through sentiment analysis

All of this intel about user sentiments can be incredibly useful for a business’ customer support strategies. After all, you are aware of what your users think about you, your products and the messages you’ve put out. Now, should they decide to get in contact with your organisation, your customer care personnel are better prepared to engage with users who might have complaints or issues. And of course, these interactions are a great source of data as well!

Businesses can log all the responses users have given in response to their customer support. Then, once again through sentiment analysis, you can begin to categorise which responses worked best and continuously streamline your customer support process.

Incorporating sentiment analysis into your business strategy

As we’ve established, utilising sentiment analysis can yield a great many benefits for your business. However, as we mentioned earlier, the accuracy of your analysis depends on how intricate your algorithm-based models are. What’s more, there is an element of human supervision that is crucial for deriving precise intelligence about user intent.

This is why it’s imperative that you get experts involved in the whole data transcribing process. This frees you up to strategise new business processes, products and campaigns, instead of worrying about all the intricacies of data processing. You can learn about all the services Selerity offers that help you utilise sentiment analysis via SAS tools, right here.